Miniature compression load cell from 1 kN Model F1224

WIKA data sheet FO 51.12

Applications

- Construction of plant and apparatus
- Control of press-in and punching forces
- Measurement and inspection equipment
- Test benches

Special features

- Measuring ranges 0 ... 1 kN up to 0 ... 500 kN
- Simple force introduction
- Compact small dimensions
- Protection class IP65
- Relative linearity error 1 % F_{nom}

Miniature compression force transducer, model F1224

Description

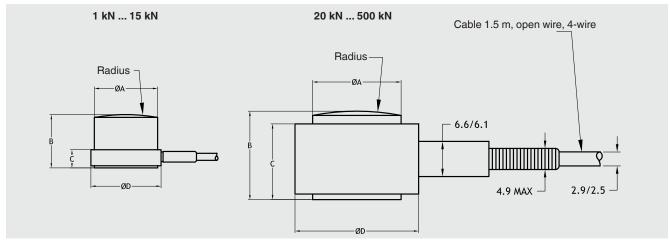
The miniature compression force transducers are specially designed for small installation spaces. They are used to determine the compression forces in a wide range of applications and are suitable for static and dynamic measurement tasks eg. in laboratories and test field.

The spherical calotte (spherical load application button) allows a very simple force introduction. The usual mounting position of the force transducer is horizontal or vertical. The force transducer is splash-proof and works reliably even under harsh operating conditions.

Note

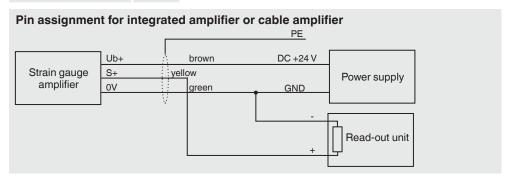
In order to avoid overloading, it is advantageous to connect the force transducers electrically during installation and to monitor the measured value. The force transducers are to be mounted on a level, grinded and sufficiently hard surface. The force is applied vertically to the force transducer axis at the spherical calotte.

Options


- High temperature version with extended nominal temperature range
- Cable amplifier with ouput 4 ... 20 mA or 0 ... 10 V
- Other cable lenghts

Technical data in accordance with VDI/VDE/DKD 2638

Model F1224	
Rated force F _{nom} kN	1, 2, 5, 10, 15, 20, 30, 50, 100, 200, 500
Relative linearity error d _{lin}	±1 % F _{nom}
Temperature effect on zero signal TK ₀	< ±0.1 %/10 K
Temperature effect on characteristic value TK_C	< ±0.1 %/10 K
Force limit F _L	150 % F _{nom}
Breaking force F _B	> 300 % F _{nom}
Permissible oscillation stress acc. to DIN 50100 F_{rb}	70 % F _{nom}
Rated displacement s _{nom}	< 0.05 mm
Material	Stainless steel
Rated temperature range B _{T, nom}	15 70 °C
Operating temperature range B _{T, G}	-54 120 °C
Reference temperature T _{ref}	23 °C
Output signal (rated output) C _{nom}	1.5 mV/V
Input-/output resistance R _e /R _a	350 Ω
Insulation resistance	$>$ 5 G Ω with 50 V
Electrical connection	Cable 1.5 m, open wires, 4-wire, shielded
Rated range of excitation voltage B _{U, nom}	5 V (max. 5 V)
Supply voltage Standard Option	DC 12 28 V 0(4) 20 mA DC 0 10 V Integrated or cable amplifier
Protection (acc. to IEC/EN 60529)	IP65
Weight in kg	4g up to 400 g depending on rated force incl. cable


Dimensions in mm

Rated force in kN	Dimensions in mm				
	ØD	ØA	В	С	
1	12.7	6.9	9.65	3.3	
2	12.7	7.1	9.65	3.3	
5	12.7	7.9	9.65	3.3	
10	12.7	10.4	9.65	3.3	
15	16.0	12.4	15.24	5.8	
20	16.0	13.5	15.24	5.8	
50	22.35	19.3	16.0	13.7	
100	44.45	31.75	35.1	31.75	
200	44.45	31.75	35.1	31.75	
500	50.8	38.1	41.4	38.1	

Pin assignment

Electrical connection				
Excitation voltage (+)	Red			
Excitation voltage (-)	Black			
Signal (+)	White			
Signal (-)	Green			

WIKA data sheet FO 51.12 · 03/2018

The specifications given in this document represent the state of engineering at the time of publishing. We reserve the right to make modifications to the specifications and materials.

Page 3 of 3